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Two-dimensional turbulent wakes 

By I A N  S. GARTSHORE 
Department of Mechanical Engineering, McGill University 

(Received 16 November 1966 and in revised form 21 July 1967) 

The equations of mean motion indicate that two-dimensional turbulent wakes, 
when subjected to appropriately tailored adverse pressure gradients, can be self- 
preserving. An experimental examination of two nearly self-preserving wakes is 
reported here. Mean velocity, longitudinal and lateral turbulence intensity, inter- 
mittency and shear stress distributions have been measured and are compared 
with Townsend’s data from the small-deficit undistorted wake. In comparison 
with the undistorted case, the present wakes have slightly lower turbulent 
intensities and significantly lower shear stresses, all quantities being non- 
dimensionalized by a local velocity scale taken as the maximum mean velocity 
deficit. A consideration of the reasons for the shear stress reduction leads to an 
expression from which the shear stresses in any symmetrical free equilibrium 
shear flow can be found. This relationship is used to calculate the rate of growth 
in the measured wakes, with reasonable success. 

1. Introduction 
Until recently, all experimental evidence for shear flows indicated that a self- 

preserving flow occurs in any situation for which a self-preserving form of the 
equation of mean motion can be written. Reynolds (1962) and Keffer (1965) have 
shown, however, that further conditions must be satisfied. They examined wakes 
subjected to approximately uniform and constant rates of strain and found that, 
despite the existence of a self-preserving form of the equation of mean motion, 
their flows were seldom if ever self-preserving. This result was attributed by both 
authors to a production of turbulent energy dependent on the applied uniform 
rate of strain and not on the local shear stress. Through this production term, it 
appears that the precise form of distortion creating the wake can influence the 
entire flow development whereas the details of the initial distortion are irrelevant 
in a truly self-preserving motion. 

Since self-preserving flows are of particular importance in the study of turbulent 
shear, because of their relative simplicity, it is of interest to examine other poten- 
tially self-preserving wakes developing in appropriately tailored distortions. This 
paper describes an experimental study of two such two-dimensional wakes and 
discusses the relationships between simple free turbulent self-preserving shear 
flows. For completeness, the conditions specified by the equations of mean motion 
for self-preservation will be described before presenting the experimental 
results. 

35-2 



548 Ian 8. Gartshore 

2. The conditions for self preservation 
Following Townsend (1956a) and Pate1 & Newman (1961), a shear flow is 

considered whose mean properties are functions of x and y only and which is 
always confined to a sufficiently narrow region that the ‘boundary-layer ’ 
approximations apply. The equation of motion in the x direction may then be 

where U, is the free-stream velocity outside the shear flow. 
Assuming self preservation, and using Townsend’s notation, the velocity 

scale Uo and length scale Lo are introduced by means of the following functional 
relationships : 

where 7 = (y /Lo) .  The scale Uo may be conveniently defined in wakes as the maxi- 
mum velocity deficit and for jets as the maximum velocity increment; the length 
scale Lo is taken in this discussion as half the width between positions of half 
maximum velocity deficit of the wake or jet mean velocity profile. 

With the continuity equation for the mean flow, and the forms given by ( Z ) ,  
the equation of motion becomes 

where primes indicate differentiation with respect to 7. 
For self preservation, the x-dependent coefficients of the terms in (3) must be 

proportional to one another, or constants, so that (if the viscous term can be 
neglected) the following parameters must be independent of x : 

These requirements are satisfied if 

where xo and m are constants for a particular flow. Another possibility, that Lo is 
constant, is not of interest here. 
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Since Uo/Ul is a constant, a rather simple form of the momentum integral 
equation may be written, using the functional forms defined in (2). The complete 
integral equation is 

where 

which essentially imposes the additional condition that 

UYL, = constant. (6) 

The constant a, which is dependent on Uo/Ul as shown in (5), must be equal to 
m by equations (4) and (6) so that the momentum integral equation merely de- 
fines the exponent m in terms of the ratio V,/U,. 

In summary, the momentum equation implies, for a self-preserving two- 
dimensional shear flow, that the conditions in (4) are satisfied where m is equal 
t o  a, defined following (5). This analysis, which was given in almost the same form 
by Pate1 & Newman, applies equally well to jets or wakes provided U, and f 
are appropriately defined in each case. Since the shape of f(7) changes little be- 
tween jets and wakes, it is convenient to regard U, as positive for jets and nega- 
tive for wakes. 

Because g, and g, are positive functions and are small almost everywhere in 
comparison with f, the relation for a or m can usually be written with good 
accuracy as 

Three limiting values of m can be readily identified: 

increment jet) ; 
(i) Uo+O; m = 3; the exactly self-preserving small-deficit wake (or small- 

(ii) Ul+ 0; m = 2; the free jet in still air; 
(iii) U, = - Ul; m M 5.4; the wake having the largest possible velocity deficit 

but without backflow. The functionf(7) defined in (8) was used to evaluate m in 
this case. 

3. An experimental study of two potentially self-preserving wakes 
3.1 Experimental arrangements 

The wake measurements described here were made in the McGill University 
open-circuit blower wind tunnel which has a rectangular working section of 
dimensions 17 in. x 30in. Both 30in. sides of the tunnel were replaced, for these 
experiments, by slats which could be adjusted to bleed air from the tunnel in 
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order to  create an adverse pressure gradient when a perforated plate was fastened 
over the downstream end of the section. A t in .  square rod, attached to the mid- 
points of the 17 in. sides of the tunnel with one flat face normal to the oncoming 
stream, was used as the wake-forming body. The %in. dimension is denoted in 
the text and figures by the symbol d. 

( U -  U , ) l ~ ,  

0, y < 0; A, y > 0. 
FIGURE 1. The mean velocity distribution for wake A .  Streamwise location is x/d = 194.5. 

Mean velocities were measured with a round Pitot tube having sharpened lips 
together with static taps located in one of the side walls. A DISA constant- 
temperature hot-wire anemometer was used to obtain measurements of turbu- 
lent quantities. Intermittency measurements were made by visual examination 
of trace recordings, as described previously (Gartshore 1965). 

In forming the wakes, the pressure gradient downstream of the square rod was 
adjusted until an approximately constant ratio of U,/U, was obtained. Final 
measurements of wake growth and external pressure gradient were then made. 
The two wakes formed in this way have been designated as wake A and wake B. 

3.2. The mean motion and external pressure gradient 

The non-dimensional profile of mean velocity in wake A. is shown in figure 1, 
and within experimental error is the same as that in wake B. A convenient ap- 
proximation to this distribution is given by 

U, - U = - U, exp ( - ~ ( Y / L , ) ~ )  

= --wY7)9 (8)  
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where k = In 2 by definition of Lo. This curve is also plotted in figure 1. For values 
of (y/L,) greater than about 1-5, the exponential curve slightly overestimates 
the actual mean velocity, whichls the usual mode of departure. 

0’30 t Wake B 

t I 0.20 

0 50 100 150 200 250 

Xld 

FIGURE 2. Mean-velocity deficit on wake centre-lines. A, 0, measured values; -, calcu- 
lated values using observed pressure gradient ; - - -, calculated values using pressure gra- 
dient required for exact self preservation. 

Streamwise distributions of the ratio UolUl are shown in figure 2 for the two 
wakes; both vary only slightly over the range investigated. Using average 
values of Uo/Ul for each wake, theoretical values of m can be found for the two 
cases using (7) and (8); these are listed, together with other relevant data for the 
two wakes, in table 1. 

The growth of eachwake is plotted in figure 3, where Lo, the half-width to half- 
depth, is plotted against x. Approximate linearity is evident in conformity with 
the prediction of (4). 

The measured external pressure distributions are plotted in figure 4 as Uym 
against x (distance from the leading edge of the wake-forming body) for the two 
wakes. The parameter m has been calculated from (7)  and from the mean experi- 
mentally measured value of Uo/U, on the assumption that (4) are a sufficiently 
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accurate description of the actual flow to  permit a and m to be equated. Approxi- 
mate linearity is evident in both cases, confirming the usefulness of (4). 

One deficiency in the present measurements becomes evident from a close 
comparison of figures 3 and 4 : the wake width Lo and the external velocity para- 
meter Ucm are both approximately linear but they have different virtual origins 
(i.e. values of xo in (4)). The wake B is considerably closer to true self preserva- 

Wake A Wake 3 

- Uo -- 5 

d Ul 

21.2 0.266 
72.2 0.184 

112 0.194 
149 0.192 
194.5 0.196 
237 0.192 

3 -  Ul 
d Ul,, 

1.72 1.14 
4.14 1.00 
4.94 0.92 
5.52 0.89 
6.44 0.84 
7.22 0.80 

Average U,/U, is - 0.192 
Mean m is 3.16 
At body U,d/v = 6300 

-7 r 

C 

1.00 
0.906 
0.860 
0.816 
0.775 

- 

Uo 
d Ul 

- _. 
X 
- 

22.7 0.243 
66 0.230 

104 0.241 
140 0.239 
176 0.244 
213 0.238 

Ul 
d Uhf 
-. ~ 

1.82 1.22 
3.98 1.00 
5.18 0.91 
6.06 0.88 
6.80 0.84 
7.32 0.82 

Average U,/U, is - 0.239 
Mean m is 3.20 
At body U,d/v = 7300 

7 

C 

1.00 
0.957 
1.00 
0.992 
0.992 

- 

TABLE 1. C is (UTL,) non-dimensionalized by the value of t)his quantity at the first 
measurement station a t  which the wake growth is linear 

0 , 

'1- a 
0 1  I I I I I 
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FIGURE 3 

01 I I 
0 100 200 

%Id 

FIGURE 4 

FIGURE 3. Wake widths. A, 0 measured values; ___ , calculated values using observed 
pressure gradient; - - - , calculated values using pressure gradient required for exact 
self preservation. 

FIGURE 4. Variation of external velocity. 0, measured values; -, pressure gradient 
assumed in calculations based on observed values ; - - -, pressure gradient required for 
exact self preservation. 
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tion in this regard, having values of x,ld for the width and external velocity varia- 
tions of about 92 and 86 respectively. Corresponding values of xo/d for wake A 
are approximately 152 and 82. 

A final check on the mean motion of the two wakes is possible through the use 
of (6), derivedfromthe momentum integral condition. Values of (UYL,), normal- 
ized by the value of the first measurement station, are listed in table 1. Wake A 
does not conform particularly well to ( 6 ) )  the ‘constant ’ changing by over 20 % 
€or the total streamwise distance investigated. Such changes in experimentally 
determined momentum constants are unfortunately typical, being evident in 
the measurements of Townsend (1956a) and Reynolds (1962). Wake B agrees 
quite well with the requirement of (6). 

From the mean velocity measurements, both wakes appear to be approxi- 
mately self-preserving, wake B being more closelyso than wake A .  Attention will 
next be given to the turbulent intensity and shear distributions. 

3.3. Turbulent intensities and shear distributions 

The longitudinal turbulent intensity, non-dimensionalized with the velocity scale 
U,, is plotted in figure 5 for wake A and in figure 6 for wake B. The effect of in- 
creasing I U,/Ull (which is largest in wake B),  is in general to lower the ratio G/Uo. 
Based on the results of Townsend (1956a) for the zero-pressure-gradient case, it  
appears that the present wakes are very close to complete self preservation in 
the streamwise range xld > 140. 

The lateral turbulence intensity distributions, measured in wake A at xld = 

194.5 and in wake B at xld = 140, are plotted in figure 7, and compared there 
with zero-pressure-gradient results. Differences between the three results are sur- 
prisingly large near the wake centre-line but in general the figure shows that the 
effect of increasing the ratio 1 U,/U,J is again to reduce the intensity ratio. 

Distributions of shear stress in the two wakes are plotted in figure 8 together 
with results for the small-deficit, zero-pressure-gradient wake calculated from 
Townsend’s measurements of mean velocity ( 1 9 5 6 4 ,  and the equations of mean 
motion. (Incidentally, using Townsend’s measured distribution of 2, and the 
present values of UE/ UE derived from his mean velocity measurements, a maxi- 
mum shear coefficient - Ui?/uyof 0.62 can be found, considerably larger than the 
maximum value of 0.41 reported by Townsend for this flow.) 

The present measurements of shear stress agree quite well with values calcu- 
lated from the equations of motion and indicate large reductions in stress com- 
pared with the zero-pressure-gradient case. A slight decrease in stress is apparent 
from wake A to wake B as well, following the trend observed in the normal stress 
distributions for a lower intensity corresponding to a larger value of 1 U,/Ull. 

For two-dimensional mean motion, the two turbulent energy production terms 
are 

- - au 
aY ax 

__ au uv- and (u2-v2)-. 

The second of these terms corresponds, for two-dimensional motion, to those 
found by Reynolds (1962) and Keffer (1965) to produce non-self-preserving 
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FIGURE 5. Longitudinal turbulence intensity ratio, wake A .  0, x/d = 7 2 ;  b, x/d = 149; 
x , x/d = 237 ;-, zero-pressure-gradient,small-deficitwake, x/d > 650 (Townsend 1956a). 

FIGURE 6. Longitudinal turbulence intensity ratio, wake B. 0, x/d = 66; A, x/d = 140; 
x, x/d = 213; -, zero-pressure-gradient, small-deficit wake, x/d > 650 (Townsend 
1956 a). 

(z/u;)H 
FIGURE 7 

I I I I 
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- 

-uv/u; 

FIGURE 8 

FIGURE 7. Lateral turbulence intensity ratio, wakes A and B .  0, x/d = L94.5, wake A ;  
0, x /d  = 140, wake B; - , zero-pressure-gradient, small-deficit wake, x/d > 500 
(Townsend 1956a). 

FIGURE 8. Shear stress distributions, wakes A and B.  0, xld = 194.5, wake A ;  A, x/d = 
140, wake B ; ---, zero-pressure-gradient, small-deficit wake, calculated from mean velocity 
measurements (Townsend 1956a) x / d >  500, using equations of mean motion. 
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motions in their distorted wakes, as described in Q 1. A convenient measure of the 
relative importance of these two production terms in the present cases is, follow- 
ing Reynolds (1962), the parameter G defined as 

[ Uz'@ au/ayl G = -  -- 
%2 - 2 a u p x  y=L,- 

Large values of G (greater than about unity) would imply a wake dominated by 
shear, whereas small values of this parameter would reflect a non-self-preserving 
development. In  both the present wakes, the values of G are greater than 10 for 
typical streamwise positions (x/d M 150), so that their developments are dic- 
tated by the shear term in contrast to  the wakes investigated by Keffer and 
Reynolds. 

I I I I I 
0 0.2 0 4  0 6  0 8  1 0  

Y 
FIGURE 9. Intermittency distribution, wake B. U, measured values at z/d = 140; ---, 
small-deficit wake (Townsend 1949), x/d = 1000; - - -, small-deficit wake (Townsend 
1956a), x/d = 160. 

3.4. The intermittency distribution 

The intermittency distribution was measured for wake B at x/d = 140 by a visual 
examination of trace recordings made of the differentiated signal from a normal 
hot wire. The results are plotted in figure 9, together with Townsend's ( 1 9 5 6 ~ )  
measurements at the same approximate streamwise location, in the zero- 
pressure-gradient wake. The measured distributions may be used to calculate CT, 
the standard deviation of the viscous superlayer from its mean position, a quan- 
tity which is a measure of mean wrinkle amplitude of the laminar-turbulent 
interface. For the present wake, a/L, = 0.34, whereas for Townsend's measure- 
ments (at x/d = 160), a/L, % 0.48. For comparison, the parameter a/L, has a 
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value of about 0.61 in a small-deficit zero-pressure-gradient wake at  xld z 1000 
(Townsend 1949). 

Present measured values of g/Lo and RT (defined following (10); RT is essen- 
tially a non-dimensional representation of the turbulent shear stress at  y = Lo) 
do not agree particularly well with a previous semi-empirical correlation of these 
two quantities presented by the present author (Gartshore 1965). One explana- 
tion for this lack of agreement is that there are, near a bluff wake-forming body, 
turbulent motions which contribute little to the shear stress. Considering the 
large turbulence production near a bluff body during the initial distortion, the 
presence of some largely irrelevant motions is not unlikely. The value of a/Lo 
measured by Townsend near a wake-forming body in zero pressure gradient is 
considerably smaller than the value of this quantity farther downstream, as 
noted above. The present value of a/Lo is consistent with Townsend’s observa- 
tions in so far as the value ofa/Lo measured for wake B is too small for good agree- 
ment with the previously formulated correlation. 

4. The effect of a small lateral strain 
Townsend (1956a) suggested that a positive lateral rate of strain (aujax) > 0 

in a two-dimensional shear ffow decreases the size of the largest eddies, thereby 
reducing the mixing and the effective shearing stresses. From his explanation it 
would appear that a negative lateral rate of strain would tend to increase the 
stresses, by increasing the large-eddy size. The present experiments, in which 
(aU/ax),,,o < 0 ,  show, however, that a negative lateral rate of strain again re- 
duces the effective stresses, at  least in so far as ( a  U p x )  is typified by its value at 
y = Lo. An explanation of the effect of (aU/ax) on the large eddies is presented 
below. It postulates the existence of a large eddy similar to that proposed by 
Townsend despite the fact that the details of Townsend’s large-eddy structure 
have been shown to be inaccurate (Grant 1958). For the present heuristic pur- 
poses, these details are unimportant. 

Physically the effect of a lateral rate of strain on a large eddy may be demon- 
strated by considering a very simple two-dimensional shear flow in which 
aU/ay and aU/ax are constant everywhere. Such a flow could be described by the 
stream function q? = Ay2/2+Bxy where A = aU/ay and B = aU/ax. Two cases 
will be compared, B > 0 and B < 0, both having equal positive values of A. 
A small element of vorticity representing a large eddy and placed along the y-axis 
at  x = y = 0 in the assumed flow will be rotated by the flow until it lies along the 
line y = 0, if B > 0 or along the line y/x = - 2B/A if B < 0. Meanwhile its vor- 
ticity will be stretched by the rate of strain field whose larger principal rate of 
strain direction makes an angle 8 with the x-axis, where 8 is given by 

8=tan- l  --+ 4-+1 ( Y ( :: )”) 
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The effect of the rates of strain on the small element of vorticity may be simply 
described by the angle between the element’s final orientation (near which it 
spends most of its life) and the larger principal rate of strain direction. For both 
positive and negative B, this angle (denoted by p) is equal to (in - IB/A I), again 
for small IB/A I. Because the angle p is largest when B = 0, assuming a given 
value of A ,  the large-eddy vorticity in this case will be stretched less than for 
any other value of B. Since the lateral scale of an eddy is decreased by longitudinal 
stretching (assuming for this discussion that the effects of diffusion are minor), 
the large eddies in a flow in which B = 0 will be larger laterally than in any other 
case. 

Although the present explanation of the way in which non-zero (aU/ax) 
affects the large-eddy growth is somewhat different from that presented by 
Townsend (1  956a), the present conclusions substantiate Townsend’s hypothesis 
that the large eddies in a small-deficit wake in zero pressure gradient, in which 
B z 0, occupy a larger proportion of the mean flow shear region than in any other 
case. The expression for /3 above indicates that there is no effect on the large eddy 
of a change in sign of B, a conclusion which is unaffected by altering the sign of 
A ,  as may easily be shown by arguments similar to those used above. 

5. A relation between approximately self-preserving flows 
The previous section extended a suggestion by Townsend concerning the way 

in which the large eddies are modified by a lateral rate of strain. This led to the use 
of a parameter (B/A) representing the effect of this lateral strain rate, and, from 
physical arguments, to the conclusion that the sign of Bis unimportant. Thiscon- 
elusion is used in the following paragraphs, to provide an empirical relation with 
which the growth of any approximately self-preserving symmetrical shear flow 
can be calculated. 

The large-eddy energy equilibrium hypothesis may be expressed, for shear 
flows with similar profiles, as 

where 1 is a length scale representative of the largest eddies in the flow, and the 
ordinate y = L, has been chosen for evaluation of the shear stress parameter 
(essentially a turbulent Reynolds number) on the assumption that this location 
is typical of the structure in the outer region of the flow. A derivation of (9), and 
some experimental results supporting it, were presented in a previous paper 
(Gartshore 1965). 

The significance of a lateral strain rate may be assessed through the ratio 
(aU/i?x)/(aU/i?y), measured at a non-dimensional ordinate typical of conditions 
affecting the large eddies, in this case the ordinate y = L,. This ratio is analogous 
to the parameter (B/A)  used in the discussion of the previous section. Denoting 
the ratio of the real rates of strain by f ,  then 
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RT = & ( f l ) ,  

From the argumentsof the previoussection, that the sign of BIA (and, by ana- 
logy, of f l )  is unimportant, the function h, must be even in c. Figure 10 shows the 
values of RT and 5 evaluated experimentally in the two wakes A and B of $ 3  
and also contains values obtained from measurements in two other exactly or 
approximately self-preserving cases : the small-deficit wake in zero pressure 
gradient, and the jet in still air. The values of RT and [ used for these last two 

40 r 

10 1 uniform flow 

01 I I I I I 

gz x 104 
0 10 20 30 40 50 

FIGURE 10. Comparison between four approximately self-preserving flows. 0, small- 
deficit wake in zero pressure gradient; A, two-dimensional jet in still surroundings; 
0, wake A ,  x/d = 194.5, x ,  wake B, x/d = 140; -, equation (11). 

cases are those given by Newman (1965) and are, jet: R, = 32.9, fl  = 0,0665; 
wake: RT = 13-0, 6 = 0. The values o f t  for wakes A and B were obtained from 
the measured velocity and width variations, a process which involves differentia- 
tion of experimental results and is therefore somewhat inaccurate. Values of 
RT for the present cases were obtained from the measured values of (SElU;) 
shown in figure 8. 

The results presented in figure 10 are taken from quite different types of flows: 
the small-deficit zero-pressure-gradient wake is not exactly self-preserving and 
does not grow linearly, the jet in still air has a large positive value of ( a U / a ~ ) , ~ ,  
whereas the wakes A and B have negative values of this parameter. Nevertheless, 
bearing in mind that wake B is more nearly two-dimensional and self-preserving 
than wake A ,  the function linking R, and 6 for all cases appears to be represent- 
able by the simple relation 

with 
(11)  

RT = a, + a,f12, 
a, = 13 and a, = 4500. 
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It is of practical engineering interest to see how accurately the approximate 
relation of (11) is able to predict the growth in width and the decay of velocity 
defect of the wakes A and B. For this purpose, two momentum integrals can be 
written, one extending across the entire flow and a second having limits y = 0 
and y = Lo which, with the velocity profile of (8), yield two total differential 
equations. A third equation describing the observed variation of external velo- 
city was used (see figure 4) and the three equations were solved numerically 
using a Runge-Kutta integration scheme. The shear stress at  y = Lo in the flow 
is known from (1 1) and,except for the use of this equation, the method of calcula- 
tion is not restricted to self-preserving cases. 

The results of the calculations using the observed pressure gradients are shown 
in figures 2 and 3 together with the measured data. The agreement between 
measured and calculated values suggests that, for many purposes, (1  1) is suffi- 
ciently accurate to predict the streamwise development of symmetrical flows 
which are approximately self-preserving. 

As already mentioned, the measured values of Lo have different virtual origins 
from the corresponding variations of external velocity, a fact which explains the 
deviations of the calculated values of UolU, from a constant value and of the cal- 
culated growths of Lo from precise linearity. The external velocity variation 
which would be required for exact self-preservation may be found from the two 
momentum integral equations already described, together with (1 l), simply by 
assuming that equations (4) are exact. The self-preserving development calcu- 
lated in this way is plotted in figures 2 and 3 (again using the first experimental 
point to specify initial conditions) and the calculated external velocity variation 
required to produce this exact self preservation is shown in figure 4. 

From the foregoing calculations, it is clear that a knowledge of the shear stress 
such as that postulated in (1 1) can be used either to predict the exact pressure 
variation required for a true self-preserving development or to predict the actual 
streamwise development of a nearly self-preserving flow when a measured pres- 
sure distribution is specified. How far an actual flow can deviate from exactly 
self-preserving conditions and still have its development predicted by (1 1)  re- 
mains an open question however. 

6. Other shear flows 
Since the shear stress in a shear flow is governed primarily by the local scale 

of the large eddies, which is in turn affected by the mean rates of strain acting on 
the large eddies throughout their lifetime, the use of local strain rates will be 
appropriate only in self-preserving cases. In  other cases, upstream values of the 
strain ratio must be found which account for the history of strain rates 
imposed on thelarge eddies, the distanceupstream depending on therate at which 
the flow is deviating from self-preserving development and on the time taken by 
the large eddies to modify their scale in response to the changing rates of strain. 

In contrast to the wakes discussed here, equilibrium boundary layers appear to 
contain large eddies which change very little in scale, relative to the boundary- 
layer thickness, over a significant range of equilibrium parameter. Evidence for 
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this is given by Bradshaw’s measurements (Bradshaw 1966) in which the non- 
dimensional mixing lengths in three equilibrium boundary layers are almost 
identical, near the centres of the layers; as can be shown from (9), the calculated 
mixing length is really a measure of the large-eddy scale (Gartshore 1965). 
Bradshaw’s measurements justify Townsend’s assumption for equilibrium 
boundary layers (Townsend 1956 b )  that the non-dimensional large-eddy scale is 
not affected by mean pressure gradient, an assumption which produced reason- 
ably good agreement with Clauser’s (1956) measurements in equilibrium cases. 
The wall itself sharply bounds thelateral extent of the large eddies and thissevere 
restriction probably accounts for the constancy of large-eddy scale. 

The author would like to thank Dr B. G. Newman for many helpful discussions 
during the course of this investigation, which was supported financially by the 
Defence Research Board of Canada under grant number 9551-13. 
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